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Abstract — A new estimator is proposed to extract
the true distance between a mobile and a base sta-
tion from a set of time-of-arrival (TOA) data, cor-
rupted by unknown non-line-of-sight (NLOS) errors
and Gaussian measurement noise. Characteristics of
the estimator are discussed for a class of NLOS er-
rors with variance considerably greater than that of
the measurement noise, which is usually the case in
practice. A quantization approach is used to estimate
the probability density function of the observed TOA
measurements and the TOA estimator is computed
from this density estimate.
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I. INTRODUCTION

In the study of mobile positioning in wireless communica-
tion systems, accurate location estimation of a mobile station
has proven to be an important problem. Multipath, non-line-
of-sight (NLOS) propagation and multiple access interference
are often the main sources of errors in geolocation, and make
mobile positioning challenging. Among these error sources,
NLOS is usually considered to be the most crucial one and
several practical algorithms to reduce the effects of this error
have been proposed in the literature. In [2] a hypothesis test-
ing approach is used to determine NLOS base stations and
then the line-if-sight (LOS) reconstruction is achieved using
the history of the measurements based on the hypothesis test-
ing results. In [1] statistics of the measurement noise are used
to estimate the distances between the mobile and the base
stations. However, the assumption made that measurements
lower than the true distance are due to the measurement noise
only may not hold in general. In [3] an algorithm is used to
mitigate the NLOS errors when no prior information is avail-
able assuming that there are more than three base stations for
geolocation purpose.

In this paper, a time of arrival (TOA) estimator is proposed
for a class of NLOS error statistics. It is shown that when the
NLOS error has a much larger variance than the Gaussian
measurement error, which is usually the case [1], and when its
probability density function (pdf) is approximately constant
around the origin, then the first derivative of the pdf of the
measurements has a peak near the true TOA. This observation
is the key to the estimator proposed in this paper.

The remainder of this paper is organized as follows. Section
IT describes the estimator and discusses its properties. Use of
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the estimator in a geolocation problem is addressed in Sec-
tion III, followed by simulation results in Section IV. Finally,
Section V presents some concluding remarks.

II. TIME OF ARRIVAL ESTIMATION

The estimator we propose is based on the estimation of the
pdf of the observed set of TOA measurements, which are the
outcomes of a random process with the following characteris-
tics:

Y=d+E+N (1)

where d is the LOS delay to be estimated, N is the measure-
ment error, which is modelled as a Gaussian random variable
with zero mean and known variance 2, and F is the NLOS
incurred delay taking a value between 0 and some value L,
possibly infinite.

Define Z = d + E. Note that the pdf of Z will be zero
for Z < d, and the pdf of the observation Y will be the con-
volution of the pdf of Z and the pdf of the Gaussian noise,
N.

Depending on the properties of the pdf of E, we can make
the following property.

Property 2.1 If the density of the NLOS error E is uni-
form with a variance much larger than the variance of the
Gaussian noise, then the probability density of Y has its second
derivative equal to zero (saddle point) at almost the true time-
of-arrival, d. Furthermore, the assertion remains valid for a
non-uniform NLOS error with bounded pdf, that is, fe(x) < B
for all x, if the pdf of the NLOS error is almost constant be-

2
tween 0 and o, where o < L satisfies foa(l—x2/0'2)67#dm <
2763 /B and is considerably larger than the standard devia-
tion of the Gaussian measurement noise, o.
An argument supporting this property is as follows. Since
Z =d+ E, the pdf of Y at a point ¢ is

d+L
fr(t) = / J2(r) i (t — ), @)

where fz is the pdf of Z and fxn is the density associated with
the Gaussian noise. Taking the derivative with respect to ¢,
dfy (1)

we have s
qt :/d fz(T)idi(;t_ 7) dr. (3)

Setting the second derivative to zero to find the point that
achieves the maximum increment in the density of Y, we ob-
tain

T=0.
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Figure 1: First derivative of the sum of the NLOS error
and the Gaussian error for L = 50m and o2 = 25m.
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Figure 2: Second derivative of the sum of the NLOS error
and the Gaussian error for L = 50m and o2 = 25m.

equation (4) leads to
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If the NLOS error E has a uniform distribution, the associated
pdf can be taken out of the integral and cancelled. Further-
more, if the Gaussian noise has almost all of its power between
—L and L, then at t = d the left hand side is equal to é which
is equal to the right-hand side.

Thus, for sufficiently large L, the second derivative of the
pdf of the observed random variable is approximately zero at
true TOA, d. This point is the first (and only, if the NLOS is
uniform) positive peak of the first derivative of the observed
pdf.

The fact that the second derivative is close zero at d means
that the true TOA is close to the saddle point since the second
derivative of the pdf of the measurements changes consider-
ably around that point (see Figure 2 where d = 0), which
can be seen from the non-negligible negativity of the third

derivative at t = d:

Efet) [T (r—d)
T__/d 12(T) oy

If the NLOS distribution is not uniform, then the argu-
ments above will not hold in general, especially when the
measurement noise variance is comparable to the NLOS er-
ror variance. However, in practice, as is argued in [1] and [2],
the measurement noise variance is usually much smaller than
the NLOS error variance, and the pdf of the NLOS error can
be regarded as practically constant for an interval comparable
to o and the above result still holds approximately as shown
below.

After a change of variables and using fr(z) = fz(x + d),
the expression (6) at t = d can be expressed as

—d)? (r—a)?
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If we consider the integrals from 0 to o and « to L sepa-
rately, we have approximately

fE(O)/Oa \/%0_3(1—1‘2/0'2)6_%d$
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Due to the conditions in the proposition, the first term in
(8) is approximately zero. Also since L is very large com-
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zero. Therefore, |faL(1 — 2%/0?)e 27 da| < V210%/B as
well. Hence, the second term is also approximately zero.

Therefore, when the pdf of the NLOS error is almost con-
stant around the origin and has much larger variance than the
measurement noise variance, the true TOA will be very close
to the point where the second derivative is zero, and might be
assumed to be equal to that saddle point without much loss
of performance.

As a worst limiting case, where the assumption regarding
the relationship between the variances completely fails, the
NLOS error density is impulsive around the origin, meaning
that there are only LOS observations. In this case the second
derivative will be zero at the point d — . Thus, in the worst
case for a decreasing density of NLOS, the error in the estima-
tion will be o. Actually, in this case, not the second derivative
but the first derivative being equal to zero characterizes the
true TOA. However, it is usually possible to distinguish LOS
measurements from the NLOS measurements by some decision
criterion [5]. Hence the LOS case can be considered separately.

The estimator is characterized by the pdf of the observed
random variable as follows: A pdf estimation algorithm is
employed, for which a histogram approach is used, which cor-
responds to interpreting the observed data as the input to
a uniform quantizer with a specified bin size. The number
of observations per quantization bin is used to compute the
probability mass function (pmf) of the data. The smaller bin
edge value corresponding to the quantizer bin having the first
local peak in the difference between the current bin and the
preceding bin is the estimator output. Note that the choice of
the bin size of the quantizer is an important parameter.

The estimator can be formulated as follows. Given m inde-
pendent identically distributed (iid) measurements Y1, ..., Y,



we quantize these measurements into N bins. Assume that
the ith bin extends from (i — 1)l to il where [, is the bin
size. Let S1, ..., Sy denote the number of samples in the bins
and D, = S; — S;_1 the difference in the number of samples
between adjacent bins. Then, the index of the bin including
the true TOA is estimated as

b= arg min {Dl —D;—1>0and D41 — D; < 0}, (9)

and (¢ — 1)l gives the TOA estimation. Note that it is not
the reconstruction value but the bin edge that gives the true
TOA estimation, since the bin edge characterizes the incre-
ment better.

With this definition of the estimator, we have the following
property:

Property 2.2 Assume that the NLOS error is uniformly
distributed with support much larger than the Gaussian mea-
surement error standard deviation. Then, as the number of
samples goes to infinity, the error of the estimator is almost
surely confined to the interval [-0.51y, 0.51p] for small values
Of lb .

Let m denote the number of samples.
Si/m — p; almost surely, where

As m — oo,

il
pi = / f () dy, (10)
(i—1)1p

with Y given by (1). Thus, (D;—D;—1)/m — p;—2pi—1+Dpi—2
almost surely.

Let the kth bin contain the true TOA. From the above
analysis of the pdf of the measurements, we know that the
pdf increases until some point with increasing first derivative
and after almost the true TOA it continues to increase with a
decreasing first derivative. In other words, the pdf of the mea-
surements is strictly convex before the true TOA and strictly
concave after that for some time.

Consider D41 — Dy. For large m, we have

(Dk+1 — Dk)/m X Pk+1 t+ Pr—1 — 2pp
(k+1)lp (k—1)1p Kl
/ Ty (y)dy + / Iy (y)dy — 2/
k

lp (k=2)l (k=1)ly

kly
/(k_l)l fy+)+ fyy—10) —2fv(y)]dy.

Since the true TOA is in the kth bin, we can express d as
d=(k—1)ly + A where 0 < A <. Defining W =N+ F as
the sum of the NLOS and measurement errors and using the
fact that fu (z) = fy(z + d), the last integral can be written
as:

ly—A
/ Uy + 1) + fov (g — 1) — 2w () dy.

—A

(12)

When the support of the uniform error is much larger than
the standard deviation of the Gaussian measurement error
and the bin size is sufficiently small, the value of the integral
(12) is approximately zero for A = [;/2. From the convex-
tiy/concavity of the pdf around the origin, we also have for

A< lb/27 Di+1— Dk <0 and for A > lb/Q, Dyy1— D > 0.
. CA—(k—i)l
Since D; — D;—1 = f_A_((k_i_?_f)lb [fwly+0)+ fwly—-1)—

2fw (y)]dy, the convexity of fw(.) to the left of the origin
and concavity of it to the right of the origin to some extent
together with the previous result implies that D; — D;—; > 0

Iy (y)dy

fori=kk—1,...and D; — D,_1 <Ofori=k+2,k+3,....
Therefore, the only bins that can satisfy the conditions of the
estimator (9) are the kth or the (k + 1)st bins: For A < 1;/2,
the kth bin and for A > [,/2, the (k + 1)st bin satisfies the
conditions of the estimator. Therefore, for A < [,/2, the
TOA estimate is (k — 1)l and for A > [/2, it is kly. Since
d=(k—1)ly + A, the error is between —0.50; and 0.5l;.

Note that for pdf’s satisfying the alternative conditions
stated in Property 2.1, Property 2.2 is still approximately true.

The histogram can be interpreted as the quantization of
the derivative of the pdf of the measurements. In this case,
the increments can approximately be represented by fy ((7 —
l)lb)lg = p; — pi—1 for small bin sizes. Thus the derivative
is represented by rectangular bins, and the bin edge of the
quantizer can be regarded as the representative sample for
the derivative.

The derivative of the density function of the total error with
a uniform NLOS noise is depicted in Figure 1. As is seen, the
derivative function goes to zero after the peak, and then has a
negative peak. This figure can be used to introduce a bound
on the bin size for the estimator. The estimator will compare
the competing derivatives for the peak and output the peak
as the estimated bin. The bins around the upper part of the
quantizer will be the candidates for the maximum value, and
if those bins do not interfere with the lower portion (negative
values) of the derivative curve, the estimation outcome will be
at most half the quantizer bin size away from the true TOA
(which is 0 in the figure). Assuming symmetry in the upper
part of the curve with respective to the peak of the derivative,
the bin sizes less than the difference between the peak and the
point where the derivative crosses zero, will cause a distortion
not greater than %’, whereas larger bin sizes may result in
interference with the values in the negative portion and cause
an error.

The difference between the saddle point (peak of the deriva-
tive) of the density of the observation and the maximum point
(where the derivative is zero) is on the order of a few standard
deviations of the noise. Thus the quantizer bin size should be
upper bounded by a few o’s.

III. MOBILE LOCATION

Location of a mobile in a wireless communications system

(11)can be determined from TOA measurements from a number of

base stations (BSs). Traditionally, the location of the mobile
is estimated by a least squares (LS) estimator [4], which is
the optimal estimator when the mobile is LOS to all the BS’s.
When the NLOS error is not known, this approach is still
employed and the NLOS observations are given less weight in
order to mitigate the effect of the NLOS error.

If the locations of the mobile and the BS’s are denoted
by pm and pi, ..., p» respectively with b being the number of
BS’s, the location estimate is given by the p that minimizes

b

> willlp - pill - vYi)?, (13)
i=1
where ||.|| denotes L2-norm, v is the speed of light, Y; is the
TOA measurement from the ith BS and w; is the weight that
reflects the reliability of the measurement from the ith BS,
which might be considered to be inversely proportional to the
variance of the measurements.

In NLOS situations, even though the NLOS BS is given
smaller weight, the error will still be significant unless there
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Figure 3: Mean Absolute Error versus bin size for dif-
ferent sample sizes for the uniform NLOS error, [0, 50m],
and Gaussian measurement error with variance 25m?.

are at least three LOS BS’s (for two-dimensional location).
Therefore, we suggest employing our TOA estimation tech-
nique for the NLOS BS’s before using the LS estimator. We
assume that the NLOS BS’s can be determined from the mea-
surements using a variance test [5].

Consider a series of TOA measurements from a NLOS BS.
To apply the TOA estimation technique, consider a window
around the specific TOA measurement and take those mea-
surements as input to the estimator. Note that the samples
should be sufficiently spaced in time so that they are indepen-
dent. Then, for NLOS BS’s Y; in equation (13) is replaced
by the result of the TOA estimation and the final location is
estimated by the LS scheme.

IV. SIMULATION RESULTS

Consider the model in (1) where the Gaussian measure-
ment error has variance o2 and the NLOS error is uniform
between 0 and L. Assume that m iid TOA measurements
are taken according to this model and the location of the mo-
bile does not change considerably during these measurements.
This assumption means that the NLOS error is assumed to be
independent from sampling instant to sampling instant, which
is due to the dynamic environment and/or the movement of
the mobile, but the mobile’s location can be considered to
be constant for the purposes of TOA estimation. These two
seemingly inconsistent assumptions can be reconciled since the
NLOS error variations are small-scale variations while the mo-
bile’s location is a large-scale property.

For the simulations, the observed TOA data have been con-
verted to distance measurements for convenience. The vari-
ance of the Gaussian measurement error is taken to be 25
m?. In Figure 3, the NLOS error is taken to be uniformly
distributed between 0 and 50 m and the mean absolute error
(MAE) is calculated for different bin sizes, l;. For each bin
size, 20,000 trials were performed with the true distance uni-
formly distributed between some range so that the probability
that the true distance is at any location in a bin is always uni-
formly distributed. From the figure, it is seen that there is
an optimal bin size for each sample size, m. For small bin
sizes, number of samples may not be sufficient to represent
the derivative value correctly resulting in higher errors. For
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Figure 4: Mean Absolute Error for different algorithms
for the uniform NLOS error, [0, 50m], and Gaussian mea-
surement error with variance 25m?.

large bin sizes, even though the correct bin can be chosen, the
estimation value may not be very close to the true distance
due to the large size of the bin. Also note that when the
sample size increases, the optimal value of bin size decreases.

Figure 4 compares the performance of the estimator to the
Robust Range Estimation (RRE) algorithm [1]. The error of
the RRE algorithm is higher than the error of our estimator
since the assumption used in the RRE algorithm, namely that
the measurements lower than the true distance comes from
the Gaussian error assumption, may cause some small errors.
However, that algorithm does not require specific properties
of the NLOS pdf which are assumed for our estimator. But in
practical situations the conditions on the pdf are not so tight
and are satisfied by most NLOS error distributions.

In Figure 5, the NLOS error is taken to be exponentially
distributed with mean 20 m and the mean absolute error
(MAE) is calculated for different bin sizes. For each bin size,
20,000 trials were performed with the probability that the true
distance is at any location in a bin again uniformly distributed.
From the figure, the same observations as the uniform NLOS
error case can be made. Also the algorithm clearly works for
the exponential NLOS error as well since the variance of the
NLOS error is considerably larger than the Gaussian measure-
ment error variance.

Figure 6 compares the two estimators. Again the algorithm
proposed in this paper achieves lower error values. However,
in this case, the results are closer since the NLOS pdf is expo-
nentially distributed and Proposition 2.1 applies since it has
a large variance compared to the Gaussian error.

Now consider the mobile tracking scenario shown in Fig-
ure 7, in which there are three BS’a at (0,0), (300,0) and
(150,259.8) and the mobile moves from (150, 80) to (250, 80)
on the solid line shown with a velocity of 10 m/s. Twenty TOA
measurements are taken per second. The first BS is assumed
to be NLOS with an exponential NLOS error with mean 20
m, and the other BS’s are assumed to be LOS. The Gaussian
measurement error variance is 25 m? for all measurements. 20
samples around a given sample are considered for the TOA
estimation for the NLOS BS and a bin size of 12 m is used for
the quantization. Also the weights are taken to be inversely
proportional to the variances of the measurements for the LS
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Figure 5: Mean Absolute Error versus bin size for dif-
ferent sample sizes for the exponential NLOS error with
mean 20m and Gaussian measurement error with variance
25m?2.

5 T T T T T T T

~&- Our Algorithm
-5 RRE Algorithm

45r

MAE (m)

; ; i ; i ; ; ; i
0 50 100 150 200 250 300 350 400 450 500
Number of Samples

Figure 6: Mean Absolute Error for different algorithms
for the exponential NLOS error with mean 20m and Gaus-
sian measurement error with variance 25m?.

250 b

200 b

50 b
Modified LS

I
50 100 150 200 250 300
x (m)

Figure 7: Mobile Tracking Scenario. Mobile moves from
left to right with velocity 10m/s and 20 TOA measure-
ments are taken per second. Only BS1 is NLOS.

estimator. From the figure it is seen that employing our TOA
technique for the NLOS BS improves the location accuracy.
The MAE for the traditional LS algorithm is 10.6 m whereas
it is 2.93 m for the modified scheme.

V. CONCLUSION

In this paper we have introduced a practical algorithm to
estimate true TOA of a signal between a mobile and a base
station in the presence of NLOS noise with unknown statis-
tics and Gaussian noise with a variance considerably smaller
than that of the NLOS error. It has been shown that un-
der reasonable conditions, TOA estimation can be performed
by locating the first peak of the first derivative of the pdf of
the measurements. A histogram approach can then be em-
ployed to approximate the pdf of the measurements and thus
obtain this estimate. The simulations are performed to asses
the performance of the estimator. Our simulations show the
superiority of this approach to existing methods.
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