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Abstract — Taking time-difference-of-arrival
(TDOA) is a well-known approach to positioning a
mobile station (MS) when the clocks at the base
stations (BS) and MS are not synchronized. How-
ever, most existing TDOA methods are based on
some intuitive geometric arguments, and do not take
into account such important system parameters as
signal-to-noise ratio (SNR) and effective bandwidth
in a cohesive manner. Therefore, they cannot be
guaranteed to be optimal in attaining the best
achievable positioning accuracy. In this paper, we
take systematic steps to obtain an optimum position-
ing receiver. The problem is formulated from the
viewpoint of estimation theory, whereby the relevant
system parameters are logically introduced. We first
evaluate the best geolocation accuracy for the system,
i.e., the corresponding Cramer-Rao Lower Bound
(CRLB). We further prove that it can be achieved by
the maximum likelihood estimator (MLE) based on
TDOA data. This result also implies that the popular
least square (LS) based algorithm is not optimal.

I Introduction

The time-difference-of-arrival (TDOA) based approach has
long been accepted as a principle approach to positioning a
mobile station (MS) in a non-synchronized mobile communica-
tion systems. It simplifies a geolocation algorithm by avoiding
estimation of the time-offset between the clocks at the MS and
the set of base stations (BS). However, its rationale mainly lies
in some triangulation arguments, without integrated consid-
eration of such important system parameters as the signal-to-
noise ratio (SNR) and the bandwidth efficiency. Furthermore,
a fundamental question remains unanswer: what is the opti-
mum positioning receiver structure?

The theme of the paper is to answer this question with es-
timation theory [1]. We shall concentrate on a line-of-sight
(LOS) scenario to explain the main ideas, since its extension
to a non-line-of-sight (NLOS) environment takes no new el-
ements. For the sake of completeness, we discuss it briefly
at the end of the text. We first evaluate the theoretical
best positioning accuracy, i.e., the Cramer-Rao Lower Bound
(CRLB), with the matrix separation formulation developed in
our early study [2]. We then show that the maximum likeli-

1This work has been supported, in part, by grants for the
New Jersey Center for Wireless Telecommunications (NJCWT) and
NTT DoCoMo Inc..

hood estimates (MLE) of the MS position based on TDOA can
asymptotically achieve the CRLB. The Sherman-Morrison-
Woodbury formula [3] for matrix computation plays an im-
portant role in the derivation. The immediate significance of
our result suggests that the optimum positioning receiver for
non-synchronized system can be decomposed into three steps:
first, estimate time delays of signals for each MS and BS pair
with the matched filter method; second, obtain TDOA data
by arbitrarily selecting one BS as a reference; the last is to
find the MLE of the MS position based on TDOAs.

The rest of the paper is structured as follows. We present
the problem formulation and compute the CRLB in Section II.
In Section III, we obtain the optimum receiver structure. We
discuss the NLOS related issues in Section IV. Section V
concludes the paper.

II Problem Formulation

Let us consider a non-synchronized mobile system in a LOS
environment. Let L = {1, 2, · · · , L, L + 1} be the set of indices
of L + 1 base stations, which are at

{
pb = (xb, yb), b ∈ L

}
.

The parameter of our interest is certainly the MS position
p = (x, y). Yet there is an additional unknown parameter, the
time offset between clocks at the MS and BS’s, l0/c, where
c = 3 × 108 m/s is the speed of light and l0 is in the unit
of length . Hence we define a 3-dimensional parameter θ =
(p, l0). Let τb be the time delay of the received signal at base
station b (BSb), specifically to be

τb =
1

c

{√
(xb − x)2 + (yb − y)2 + l0

}
. (1)

The received signal at BSb is

rb(t) = Abs(t− τb) + nb(t), for b ∈ L, (2)

where Ab is the signal amplitude for BSb, s(t) is the base-band
waveform, and nb(t)’s are independent complex-valued white
Gaussian noise processes with spectral density N0/2.

The probability density function (p.d.f.) of the observa-
tions conditioned on θ is

fθ (r(t)) ∝
L+1∏
b=1

exp

{
− 1

N0

∫
|rb(t)−Abs(t− τb)|2 dt

}
. (3)

Thus, by casting the NLOS geolocation as a multi-
parameter estimation problem, we can obtain the CRLB for
the best accuracy of MS position estimate. The key step is to



calculate the Fisher information matrix respect to θ, which is
defined as [1]

Jθ = Eθ

(
∂

∂θ
log fθ ·

(
∂

∂θ
log fθ

)T
)

, (4)

where ∂
∂θ

log fθ is a 3-dimension column vector and symbol

“T” designates complex conjugate and transpose. We employ
the matrix separation technique in [2] for the computation
task. Since the fθ(r) in Eq. (3) is a function of τb’s, which in
turn are functions of the parameter θ as in Eq. (1), Jθ can be
expressed with chain rule as

Jθ = H · Jτ ·HT , (5)

where H is a 3 × (L + 1) matrix, and Jτ is the Fisher infor-
mation matrix respect to τ = (τ0, τ1, · · · , τL). We decompose
the two matrices as

H =
1

c




cos φ1 · · · cos φL | cos φL+1

sin φ1 · · · sin φL | sin φL+1

−− −− −− | −−
1 · · · 1 | 1




=
1

c

(
HL hL+1

1T 1

)
, (6)

where angle φb is determined by

φb = tan−1 y − yb

x− xb
,

and

Jτ =




λ1 0 | 0

. . . |
...

0 λL | 0
−− −− −− −− −−
0 · · · 0 | λL+1




=

(
ΛL 0
0 λL+1

)
. (7)

The entries are λb = 8π2β2Rb, b ∈ L, where Rb is the SNR of
the received signal at BSb, i.e.,

Rb =

∫
|Abs(t)|2dt

N0
,

and the effective bandwidth of the signal waveform, β, is given
by

β2 =

∫
f2|S(f)|2df,

with S(f) is the Fourier transform of s(t). BSL+1 is selected
to be the reference BS for constructing TDOA. The reason for
such matrix separation will become clear soon.

Denote θ̂ as an estimate of parameters θ. Its covariance
matrix is Covθ(θ̂) = Eθ

{
(θ̂ − θ)(θ̂ − θ)T

}
. The CRLB for θ

is then expressed as

Covθ(θ̂) ≥ J−1
θ , (8)

where the inequality means that the matrix (Cov(θ)−J−1
θ ) is

non-negative definite. The inverse of the Fisher information

of Eq. (5) can be explicitly written as,

J−1
θ =

(
H · Jτ ·HT

)−1

=

(
A B
BT C

)−1

=

(
A−1 + FW−1FT −FW−1

−W−1FT W−1

)
, (9)

where

A = HLΛLHT
L + λL+1hL+1h

T
L+1,

B = HLΛL1 + λL+1hL+1,

C = 1T ΛL1 + λL+1,

W = C−BT A−1B, F = A−1B, (10)

and the inverses that occur in the expression exist [5].
Since we are primarily interested in the MS position ac-

curacy, we only consider
[
J−1

θ

]
2×2

, which is the first 2 × 2

diagonal matrix of J−1
θ , i.e.,

[
J−1

θ

]
2×2

= A−1 + FW−1FT . (11)

III Optimum Positioning Re-
ceiver

We now come to the critical proof that
[
J−1

θ

]
2×2

can be at-

tained by the MLE of TDOA measurements. Our strategy is
as follows. We first model the TDOA estimates. Its associ-
ated CRLB for the positioning accuracy, denoted as (J)−1

TDOA,
is then determined. Since it is the accuracy limit for the MLE
method, the last step is to confirm the equivalence relation

[
J−1

θ

]
2×2

= (J)−1
TDOA. (12)

Consider we estimate the time delay (i.e., TOA) of the
received signal of Eq. (2) at a matched filter output. The
TOA estimates can be approximated as [2]

ρb = τb + ηb, for b ∈ L, (13)

where the measurement error ηb is a Gaussian random variable
with N (0, ζ2

b /2), and ζb relates to λb in Eq. (7) as 2ζ2
b = 1/λb.

Thus we are able to model the TDOA, produced by taking
difference of TOA pairs, as

ωb = ρb − ρL+1

= (τb − τL+1) + (ηb − ηL+1)

= (τb − τL+1) + χb, for b = 1, · · · , L, (14)

where χ conforms N (0,Π), and BSL+1 is the reference BS. It
is worth pointing out that Π is not a diagonal matrix

Π =




ζ2
1 + ζ2

L+1 ζ2
L+1 · · · ζ2

L+1

ζ2
L+1 ζ2

2 + ζ2
L+1

. . .
...

...
. . .

. . . ζ2
L+1

ζ2
L+1 · · · ζ2

L+1 ζ2
L + ζ2

L+1




= 2
(
λL+11 · 1T + Λ−1

L

)
, (15)

due to the common reference BS.



In order to compute the CRLB associated with {ωb}, we
write its Fisher information matrix in the familiar form

(Jp)TDOA = (H)TDOA · (Jτ )TDOA · (H)T
TDOA, (16)

where
(H)TDOA = HL − hL+1 · 1T (17)

and (Jτ )TDOA = Π−1. For further evaluation of (Jτ )TDOA,
we employ Sherman-Morrison-Woodbury formula [3], i.e.,

(
D + UVT

)−1
= D−1 −D−1U

(
I + VT D−1U

)−1
VT D−1,

(18)
where I is an identity matrix, and D, V and U are as defined
with the appropriate dimensions. Additionally, by noting

1T ΛL1 = (1 1 · · · 1)




λ1 0
λ2

. . .

0 λL







1
1
...
1




=

L∑
b=1

λb, (19)

we obtain

(Jτ )TDOA =
(
Λ−1

L + λL+11 · 1T
)−1

= ΛL − 1∑
λb

ΛL · 1 · 1T ·ΛL. (20)

Submit Eqs. (17) and (20) into Eq. (16), and organize the
elements in a proper way as

(Jp)TDOA =
(
HL − hL+1 · 1T

)
·
(
λ01 · 1T + Λ−1

L

)−1 ·
(
HL − hL+1 · 1T

)T
(21)

=
(
HLΛLHT

L + λL+1hL+1h
T
L+1

)
−

1∑
λb

(HLΛL1 + λL+1hL+1) (HLΛL1 + λL+1hL+1)
T .

By applying Sherman-Morrison-Woodbury formula again
to the inverse of Eq. (21), we arrive at the desired relation
right away

(Jp)−1
TDOA =

[
J−1

θ

]
2×2

. (22)

The proof can be completed with the fact that the CRLB for
TDOA can be achieved the MLE of MS position based on
TDOAs, which is not difficult to establish [1].

Before leaving this section, we reiterate some major points.
First of all, the optimum positioning in a non-synchronized
system can be realized by MLE (or, weighted least square
(LS)) of TDOA data. Second, it can serve as a direct evidence
that the popular LS based methods are not optimal. Third,
the estimation result and its accuracy do not depend on the
choice of the reference BS.

IV Comments on NLOS Exten-
sion

For the optimum receiver in an NLOS environment, the
derivation is exactly parallel to that developed in [2] and [4].
Thus we omit the technical details and present the conclusion
only. It contains two parts. If no prior statistical information

on NLOS delays is available, we should discard the TOA mea-
surements obtained from the NLOS BS’s. We then follow the
discussion in the previous section on the LOS receiver. If on
the other hand, the prior information is given, the maximum
a posteriori (MAP) estimator on TDOAs can be shown to be
optimal.

V Conclusion

In this paper, we present the practical optimum receiver for
a non-synchronized communication system. Its connection to
the traditional TDOA approach is clarified. In our future
work, we plan to devise a computationally efficient geolocation
algorithm, which is based on the receiver structure obtained
in this paper.
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