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PRINCETON UNIVERSITY
Department of Electrical Engineering

ELE 525: Random Processes in Information Systems
Final Examination Solutions (posted on January 21, 2014)

January 20 (Mon), 2014; 1:00 pm-4:00 pm
This is a Closed Book Exam.

Problem 1: Some definitions (20 points)
Give a brief definition of each term below (less than 100 words)

(a) A semi-Markov Process and a continuous-time Markov chain (CTMC)

(b) Karhunen-Loéve expansion

Solutions:

(a) A semi-Markov process (SMP) X(t) is a right-continuous, piecewise constant process,
which takes values in a finite or countably infinite set of states S and transitions at
time t1, t2, . . . . We define the nth sojourn time by τn = tn − tn−1, n ≥ 1. We assume
t0 = 0. An SMP is characterized by

(i) the transition probability matrix (TPM) of the embedded Markov chain (EMC)
P = [Pij], where Pij = P [X(tn) = j|X(tn−1 = i], i, j ∈ S.

(ii) the set of distribution functions

Fij(t) = P [τn ≤ t|X(tn) = j,X(tn−1 = i], i, j ∈ S.

An SMP X(t) is called a continuous-time Markov chain (CTMC) if the sojourn time
distribution Fij(t) are all exponentially distributed according to

Fij(t) = 1− e−νit, t ≥ 0, i, j ∈ S.

Note that Fij(t) depends only on i, and not on j.

Remark: The infinitesimal generator Q = [Qij] defined in p. 460 can be derived from
the above parameter, i.e., Qij = νiPij

(b) The Karhunen-Loéve expansion is a generalized version of the Fourier series expansion
that we can apply to a random process X(t), 0 ≤ t ≤ T , which is not periodic,
and not necessarily stationary. For the autocorrelation function of X(t) denoted as
R(t, s) = E[X(t)X∗(s)], let λi and ui(t) be its eigenvalues and eigenfunctions such
that ∫ T

0

R(T, s)ui(s) ds = λiui(t), 0 ≤ t ≤ T, i = 1, 2, . . . ,
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and

⟨ui, uj⟩ =
∫ T

0

u∗
i (t)uj(t) dt = δi,j.

Then we can expand the process as

X(t) = l.i.m.N→∞

N∑
i=1

Xiui(t),

where Xi is the projection of X(t) onto the ith coordinate ui(t):

Xi = ⟨ui(t), X(t)⟩ =
∫ T

0

X(t)u∗
i (t) dt.

Problem 2: Brownian motion (20 points)

LetW (t) be Brownian motion (a.k.a. the Wiener process) withW (0) = 0 and Var[W (t)] =
αt. In answering the following questions, you may refer to the five properties of the process
W (t): 1. Spatial homogeneity, 2. Temporal homogeneity, 3. Independent increments, 4.
Markov property, and 5.Gaussian property.

(a) Show the following properties of W (t)

RW (t, s) = αmin{s, t}, s, t > 0. (1)

Var[W (t)−W (s)] = α|t− s|, s, t > 0. (2)

(b) Define a random process Y (t) by

Y (t) = eW (t).

Find its mean E[Y (t) and variance Var[Y (t)].

Solution:

(a) For t ≥ s,

RW (t, s) = E[W (t)W (s)] = E[(W (t)−W (s)+W (s))W (s)] = E[(W (t)−W (s))W (s)]+E[W 2(s)].

Since W (t) − W (s) and W (s) = W (s) − W (0) are independent increments,the first
term disappears. Hence

RW (t, s) = αs, 0 ≤ s ≤ t.

Similarly, for t ≤ s,

RW (t, s) = αt, 0 ≤ t ≤ s.



3

Thus we obtain (1). To derive (2), we write for t ≥ s,

Var[W (t)−W (s)] = E[(W (t)−W (s))2] = E[(W (t)−W (s))W (t)]− E[(W (t)−W (s))W (s)]

= E[W 2(t)]− E[W (t)W (s)] = αt−RW (t, s) = α(t− s).

Similarly, for t < s, we find

Var[W (t)−W (s)] = α(s− t).

Thus we derived (2).

Alternative derivation: For t ≥ s, from the temporal homogeneity, W (t) − W (s)
and W (t− s)−W (0) = W (t− 1) are identically distributed. Hence

Var[W (t)−W (s)] = Var[W (t− s)] = α(t− s).

For t < s, W (s)−W (t) and W (s− t) are identically distributed, hence

Var[W (s) = W (t)] = α(s− t).

Since Var[−X] = Var[X] for any RV X, Var[W (t) − W (s)] = Var[W (s) = W (t)].
Hence,

Var[W (t)−W (s)] = α|t− s|.

(b) Since W (t) is a normal RV at given time t, Y (t) is long-normally distributed (see.
Textbook, pp. 165-167) Recall that the moment generating function (MGF) of a
normal random variable X with zero mean and variance σ2

MX(ξ) = E[eξX ] = e
(σξ)2

2 .

The W (t) is a normal RV with zero mean and variance αt, its MGF is readily obtained
by setting σ2 = αt in the above formula, i.e.,

MW (t)(ξ) = E[eξW (t)] = e
αtξ2

2 .

By setting ξ = 1 and ξ = 2, we have

MW (t)(1) = E[eW (t)] = e
αt
2 , (3)

MW (t)(2) = E[e2W (t)] = e2αt. (4)

From (3) we find

E[Y (t)] = E[eW (t)] = e
αt
2 .

Similarly from (4) and the last equation,

Var[Y (t)] = E[Y 2(t)]− E2[Y (t)] = E[e2W (t)]− eαt

= e2αt − eαt = eαt(eαt − 1).

Remarks:
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(i) The process Y (t) = eW (t)) is called a geometric Brownian motion and is often
used to model the movement of a stock price, etc. See the textbook p. 509, Eq.
(17.163).

(ii) Even if you don’t remember the log-normal distribution or do not think of the
MGF, you can compute E[Y ] directly: By setting W (t) = X, and αt = σ2, and
Y = eX , we have

E[Y ] =

∫ ∞

−∞
ex

1√
2πσ

e−
x2

2σ2 dx

=

∫ ∞

−∞

1√
2πσ

e−
(x−σ2)2

2σ2 +σ2

2 dx

= e
σ2

2 = e
αt
2 .

Similarly,

E[Y 2] =

∫ ∞

−∞
e2x

1√
2πσ

e−
x2

2σ2 dx

=

∫ ∞

−∞

1√
2πσ

e−
(x−2σ2)2

2σ2 +2σ2

dx

= e2σ
2

= e2αt.

Problem 3: Estimation based on past values (20 points)
Consider estimating a time continuous process X(t) in terms of two preceding values,

X(t− τ1) and X(t− τ2), where τ2 ≥ τ1 ≥ 0, using the following linear estimation scheme:

X̂(t) = β1X(t− τ1) + β2X(t− τ2). (5)

Assume that X(t) is a real-valued WSS (wide-sense stationary) process.

(a) Find β1 and β2 such that the mean-square error (MSE) is minimized.

(b) Suppose that given X(t − τ1), the knowledge of the older value X(t − τ2) does not
improve the estimation X̂(t). Show that the autocorrelation function must take the
following form:

RX(τ) = RX(0)e
−α|τ |.

Solution

(a) The mean square error is

E = E[(X̂(t)−X(t))2] = E[(β1X(t− τ1) + β2X(t− τ2)−X(t))2].

Take the partial derivative of E with respect to β1 and β2 and set them to zero:

β1R(0) + β2R(τ2 − τ1)−R(τ1) = 0 (6)

β1R(τ2 − τ1) + β2(0)−R(τ2) = 0. (7)
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Then we find

β1 =
R(0)R(τ1)−R(τ2)R(τ2 − τ1)

R2(0)−R2(τ2 − τ1)
, (8)

β2 =
R(0)R(τ2)−R(τ1)R(τ2 − τ1)

R2(0)−R2(τ2 − τ1)
. (9)

(b) The assumption means that β2 = 0, i.e.,

R(0)R(τ2)−R(τ1)E(τ2 − τ1) = 0, for any τ2 ≥ τ1 ≥ 0, (10)

or equivalently

R(0)R(s+ t) = R(s)R(t), for any s ≥ t ≥ 0, (11)

We can assume R(0) = 1 without loss of generality, by normalizing X(t) so that
E[X2(t)] = 1. Then by taking the logarithm and defining Q(t) = lnR(t), the above
equation becomes

Q(s+ t) = Q(s) +Q(t)−Q(0) = Q(s) +Q(t), s, t > 0.

Then it is clear that Q(t) must take the form Q(t) = at, i.e., R(τ) = eaτ , τ > 0. Since
R(τ) ≤ (0) = 1, it is clear that a ≤ 0. By setting a = −α, we have R(τ) = e−ατ , τ ≥ 0.
Since an autocorrelation is a symmetric function we find R(τ) = e−α|τ |, or in general
R(τ) = R(0)e−α|τ |.

Alternative proof: Let s = h in (11). Then R(0)R(t+ h) = R(t)R(h). Thus,

R(t+ h)−R(t)

h
= R(t)

R(h)−R(0)

hR(0)
.

Then letting h → 0, we have

R′(t) = R(t)R′(0)/R(0),

i.e.,
d lnR(t)

dt
= R′(0)/R(0) = a,

for some constant a. Thus,

lnR(t) = at+ b,

for some constant b. Thus

R(t) = ebeat.

By identifying a = −α and eb = R(0), we obtain the above result.
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Problem 4: A hidden Markov model (HMM) and estimation algorithms (40
points)
Consider an information sequence {It} It ∈ {+1,−1}, t ∈ T = {0, 1, . . . , T}. Assume the
It’s are i.i.d. with P [It = +1] = P [It = −1] = 1/2 for all t ∈ T .

The information sequence is sent over a linear and time-invariant channel, which is disper-
sive so that a “+1” signal sent at time t appears at the channel output at times t, t+1, . . . , t+d
with amplitudes h0, h1, . . . , hd, respectively. Thus, the channel output at time t is given by

Ot =
d∑

i=0

It−ihi, t ∈ T (12)

The observation sequence Yt is given by

Yt = Ot +Nt, t ∈ T (13)

where the noise {Nt} are i.i.d. Gaussian variables with zero mean and variance σ2.
Consider the case d = 1, hence the parameters of interest are θ = (h0, h1, σ). In the

questions (a) through (e), assume that the parameters θ are fixed and known.

(a) Formulation of a hidden Markov model
Formulate the system in terms of a hidden Markov model (HMM)1

Define a set of Markov states, denoted S, and draw the state transition diagram.

(b) Conditional joint probabilities p(j, y|i)
Find the following conditional joint probabilities for all state pairs i, j ∈ S, and y ∈ R.

p(j, y|i) dy = P [St = j, y < Yt ≤ y + dy|St−1 = i], i, j ∈ S,−∞ < y < ∞. (14)

(c) Posterior probability and joint probability

When the observation sequence Y T
0 = y is given, the posterior probability of the state

sequence ST
0 = s is π(s|y) = p(s,y)

p(y)
, and the initial probability is denoted by π(s0, y0),

i.e.,

π(s0, y0)dy = P [S0 = s0, y0 < Y0 ≤ y0 + dy].

Express the joint probability p(s,y) in terms of π(s0, y0) and the conditional joint
probabilities defined in part (b).

1Definition (Hidden Markov Model). A Markov process (St, Yt) is called a partially observable Markov
process or HMM, if its state transition probability does not depend on Yt−1 = y′, i.e.,

pSt,Yt|St−1,Yt−1
(j, y|i, y′) = p(j, y|i).
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(d) Auxiliary variables and a recursion formula

Consider the following auxiliary variables:

αt(j,y
t
0) = max

st−1
0

P [St−1
0 = st−1

0 , St = j.Y t
0 = yt

0] (15)

Find the recursion formula for the auxiliary variables.

(e) Simplify the algorithm for a MAP sequence estimation

Simplify the above recursion formula and describe the resultant algorithm to find a
MAP (maximum a posteriori probability) state sequence estimate ŝ∗ from the obser-

vation Y T
0 = y. Then find the MAP information sequence î

∗
= (̂i∗0, î

∗
1, . . . , î

∗
T ).

(f) A maximum likelihood estimate (MLE) of the channel parameters

Now assume that the information sequence iT0 sent over the channel is known to the
receiver, but now the channel parameters θ are unknown and have to be estimated.
Obtain a maximum likelihood estimate (MLE) of the parameters θ from the observa-
tion y and the given information sequence i.

Solution:

(a) Most of you defined the state process St = (It, It−1), which is a state-based HMM, and
the number of states is four, i.e., S = {(−1,−1), (−1,+1), (+1,−1), (+1,+1)}.
I choose to adopt, instead, a transition-based HMM, similar to Example 20.1 of pp.
578-579 (where the state is defined by S=(It, It−1) instead of St = (It, It−1, It−2), which
would be the case in a state-based HMM).

So in this problem, I define the state S(t) simply by

St = It,

Hence, S = {+1,−1}. The transition diagram of the Markov chain has two states +1
and −1. The transition from +1 to −1 happens with probability 1/2, and to +1 itself
with probability 1/2. Similarly, the transition from −1 to +1 happens with probability
1/2, and to itself, with probability 1/2. (The diagram is skipped here, since the above
description should suffice)

(b) Noting St = It, we have

p(st, yt|st−1) =
1

2

1√
2πσ

exp

{
−(yt − ot)

2

2σ2

}
=

1

2

1√
2πσ

exp

{
− [yt − h0st − h1st−1]

2

2σ2

}
, st−1, st ∈ S = {+1,−1}

for t ∈ T , where we assume s−1 = 0.



8

(c) The initial probability is given by

π(s0, y0) = p(s0, y0|s−1 = 0) =
1

2

1√
2πσ

exp

{
− [y0 − h0s0]

2

2σ2

}
Thus,

p(s,y) = π(s0, y0)
T∏
t=1

p(st, yt|st−1)

=
1

(2σ)T+1(2π)
T+1
2

exp

{
− 1

2σ2

T∑
t=0

[yt − h0st − h1st−1]
2

}
(16)

(d) Since

αt(j,y
t
0) = max

st−1
0

P [st−1
0 , j,yt

0]

= max
i∈S

max
st−2
0

P [st−2
0 , St−1 = i,yt−1

0 ]P [j, yt|st−2
0 , St−1 = i,yt−1

0 ]

= max
i∈S

max
st−2
0

P [st−2
0 , St−1 = i,yt−1

0 ]P [j, yt|St−1 = i]

= max
i∈S

(
max
st−2
0

P [st−2
0 , St−1 = i,yt−1

0 ]

)
P [j, yt|St−1 = i]

= max
i∈S

{
αt−1(i,y

t−1
0 )p(j, yt|i)

}
.

where i, j ∈ S = {+1,−1}.

(e) Take the logarithm of the auxiliary variable

lnαt(j,y
t
0) = max

i∈S

{
lnαt−1(i,y

t−1
0 ) + ln p(j, yt|i)

}
.

Here

ln p(j, yt|i) = −c− 1

2σ2
[yt − h0j − h1i]

2

= yt(h0j + h1i)−
1

2
(h0j + h1i)

2 + y2t − c,

where
c = − ln(2

√
2πσ),

Thus, we define a new auxiliary variable or metric:

mt(j,y
t
0) = max

i∈S

{
mt−1(i,y

t−1
0 ) + yt(h0j + h1i)−

1

2
(h0j + h1i)

2

}
(17)
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Thus, the Viterbi algorithm reduces to the following simple operation. mt−1(i,y
t−1
0

is the metric or score given to the surviving path that has ended at state i at time
t − 1, where i = +1 or i = −1. The surviving path that enters state j at time t is
greater of the two competing paths determined by (17). The initial value of the metric
is m0(j, y0) = y0h0j − 1

2
(h0j)

2.

Note that the metric mt(j,y
t
0) is equivalent to the correlator (or equivalently matched

filter) output of the received sequence yt0 and the surviving state sequence st0, which is
equal to the plausible information sequence I t

0 = it0, since the state St is defined as It
in this HMM.

(f) Maximum likelihood estimation of the model parameters in this problem can be simply
solved analytically, therefore we do not need an iterative algorithm such as the EM
algorithm discussed in the text, which may be required when the state sequence is
hidden. The likelihood function is

Ly(θ) = p(s, t;θ),

where p(s,y;θ) is the same as p(s,y) obtained in (16) in part (c). We now write the
model parameters θ = (h0, h1, σ) explicitly in the equation.

Ly(θ) = p(s,y;θ) = π(s0, y0)
T∏
t=1

p(st, yt|st−1)

=
1

(2σ)T+1(2π)
T+1
2

exp

{
− 1

2σ2

T∑
t=0

[yt − h0st − h1st−1]
2

}
(18)

The log-likelihood function is given be

J(θ) = logLy(θ) = −(T + 1) ln(2
√
2πσ)− 1

2σ2

T∑
t=0

[yt − h0st − h1st−1]
2

Take the partial derivatives of J with respect to h0, h1 and σ and set them to zero.

∂J

∂h0

= − 1

σ2

T∑
t=0

st(yt − h0st − h1st−1) = 0,

∂J

∂h1

= − 1

σ2

T∑
t=0

st−1(yt − h0st − h1st−1) = 0,

∂J

∂σ
= −T + 1

σ
+

1

σ3

T∑
t=0

[yt − h0st − h1st−1]
2 = 0.
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Then we find

ĥ0 =

∑
t styt

∑
t s

2
t −

∑
t st−1yt

∑
t stst−1

,

∑
t

s2t
∑
t

s2t−1 − (
∑
t

stst−1)
2

ĥ1 = −
∑

t styt
∑

t stst−1 −
∑

t st−1yt
∑

t s
2
t∑

t s
2
t

∑
t s

2
t−1 − (

∑
t stst−1)2

σ̂2 =

∑T
t=0[yt − h0st − h1st−1]

2

T + 1
.

In the above formulae, st = it for all t ∈ T = [0, 1, . . . , T ] and s−1 = i−1 = 0.


