Lecture 3: More on Random Variables

ELE 525: Random Processes in Information Systems

Hisashi Kobayashi

Department of Electrical Engineering
Princeton University
September 23, 2013

Suppose that variables X and Y are independent, i.e.,

$$p_{XY}(x_i, y_j) = p_X(x_i)p_Y(y_j), \quad \text{for all } x_i, y_j. \tag{3.52}$$

Then

$$E[XY] = \sum_i \sum_j x_i y_j p_{XY}(x_i, y_j) = \left(\sum_i x_i p_X(x_i) \right) \left(\sum_j y_j p_Y(y_j) \right) = \mu_X \mu_Y, \tag{3.53}$$

Theorem 3.1 (Expectation of the product of independent random variables). If random variables X and Y are statistically independent with finite expectations μ_X and μ_Y, their product XY is a random variable with expectation $\mu_X \mu_Y$:

$$E[XY] = E[X]E[Y] = \mu_X \mu_Y. \tag{3.54}$$

Then in view of Definition 3.7 and (3.47), we readily have

Theorem 3.2 (Independence implies uncorrelatedness). If X and Y are independent, then they are uncorrelated. However, the converse is not true.

Theorem 3.3 (Variance of sum of independent variables). If X and Y are independent, the variance of $Z = X + Y$ is given by

$$\sigma^2_Z = \sigma^2_X + \sigma^2_Y. \tag{3.55}$$
Theorem 3.4 (Sum of \(n \) random variables). Let \(X_1, X_2, \ldots, X_n \) be random variables with finite means \(\mu_1, \mu_2, \ldots, \mu_n \) and variances \(\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2 \). Consider the sum variable
\[
S_n = X_1 + X_2 + \ldots + X_n.
\]
Then
\[
E[S_n] = \mu_1 + \mu_2 + \ldots + \mu_n \tag{3.56}
\]
\[
\text{Var}[S_n] = \sum_{i=1}^{n} \sigma_i^2 + 2 \sum_{i<j} \text{Cov}[X_i, X_j], \tag{3.57}
\]
where the last sum extends over the \(\frac{n(n-1)}{2} \) pairs \((X_i, X_j)\) with \(i < j \). In particular, if all \(X_i \)'s are pairwise independent, then
\[
\text{Var}[S_n] = \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2. \tag{3.58}
\]
3.3 Important Probability Distributions

3.3.1 Bernoulli distribution and binomial distribution

Equation (2.36) of p. 27 defines the *Bernoulli distribution* of n trials, and (2.38) defined the *binomial distribution*, i.e.,

$$P[X = k] = B(k; n, p) \triangleq \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, 2, \ldots, n.$$ \hspace{2cm} (3.62)

$$\mu_X = E[X] = np.$$ \hspace{2cm} (3.64)

$$\sigma_X^2 = \text{Var}[X] = npq.$$ \hspace{2cm} (3.66)

See Problem 3.12 for an extension to the *multinomial distribution*.
3.3.2 Geometric distribution

- Consider a series of Bernoulli trials with \(P[s] = p \).
- Let \(X \) = Number of trials until the first success.

\[
P[X = k] = q^{k-1}p, \quad k = 1, 2, \ldots,
\]

(3.68)

\[
P[X > k] = q^k, \quad k = 0, 1, 2, \ldots.
\]

(3.69)

\[
P[X > m + k | X > m] = \frac{P[X > m + k]}{P[X > m]} = \frac{q^{k+m}}{q^m} = q^k.
\]

(3.70)

\[
E[X] = \frac{1}{p}.
\]

(3.74)

\[
Var[X] = \frac{q}{p^2}.
\]

(3.75)
3.3.3 Poisson distribution

Let us consider the limiting case of the binomial distribution $B(k; n, p)$ of (2.38) when $n \to \infty$ and $p \to 0$, while keeping

$$np = \lambda,$$

where λ is a fixed parameter. Then, as will be shown below, the limit distribution becomes

$$P(k; \lambda) \triangleq \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \ldots,$$

which is the Poisson distribution with mean λ.

$$
\begin{align*}
E[X] &= \lambda \\
E[X^2] &= \lambda^2 + \lambda \\
Var[X] &= \lambda.
\end{align*}
$$
Poisson distribution with different values of λ
3.3.4 Negative binomial (or Pascal) distribution

Let

\[Y_r \triangleq \text{Number of trials needed to achieve } r \text{ successes.} \] \hspace{1cm} (3.92)

Then we readily find

\[
P [Y_r = k] = P [r - 1 \text{ successes in } k - 1 \text{ trials and a success at the } k-\text{th trial}] = \binom{k-1}{r-1} p^{r-1} q^{k-r} p = \binom{k-1}{r-1} p^r q^{k-r}, \quad (3.93)
\]

where \(q = 1 - p \). Thus, we have

\[
P [Y_r = k] = \binom{k-1}{r-1} p^r q^{k-r}, \quad k \geq r. \quad \text{(3.94)}
\]

Using the identity

\[
\binom{-n}{i} = \frac{(-n)!}{i!(-n-i)!} = (-1)^i \frac{n(n+1) \cdots (n+i-1)}{i!} = (-1)^i \binom{n+i-1}{i}, \quad \text{(3.97)}
\]

we may write (3.94) as

\[
P [Y_r = k] = \binom{-r}{k-r} p^r (-1)^{k-r}(1-p)^{k-r} = \binom{-r}{k-r} p^r (-q)^{k-r}, \quad k \geq r, \quad \text{(3.98)}
\]
3.4.1 Shifted negative binomial distribution

Let

\[E[X] = \frac{r}{p}. \]

(3.104)

\[\text{Var}[Y_r] = \frac{rq}{p^2}. \]

(3.106)

Number of failures needed to achieve \(r \) successes,

which is related to the \(Y_r \) simply by

\[Z_r = Y_r - r. \]

(3.107)

\[f(k; r, p) \triangleq P[Z_r = k] = \binom{r+k-1}{r-1} p^r q^k, \quad k = 0, 1, 2, \ldots \]

(3.108)
Figure 3.6 The shifted negative binomial distribution (3.108) or (3.109), i.e., the probability distribution of the number of failures needed to achieve r successes in Bernoulli trials with $p = 0.5$ and for $r = 0.5, 1, 2, 4, 8, 16, 32$.
4 Continuous Random Variables

4.1 Continuous Random Variables

- **Continuous random variable**: A random variable is called a **continuous random variable**, if its range is a continuum or, equivalently, if its distribution function is everywhere continuous.

4.1.1 Distribution function and probability density function

- The derivation of the distribution function $F_X(x)$, if it exists, is called the **probability density function (PDF)** of X:

 \[f_X(x) = \frac{dF_X(x)}{dx}, \]

 (4.3)

- In differential notation, we write formally

 \[f_X(x) \, dx = dF_X(x) = P \{ x < X \leq x + dx \}. \]

 (4.4)
Therefore,

\[F_X(x) = \int_{-\infty}^{x} f_X(u) \, du. \quad (4.5) \]

- **Properties of the PDF:**

\[f_X(x) \geq 0. \quad (4.6) \]

\[P[a < X \leq b] = \int_{a}^{b} f_X(x) \, dx. \quad (4.7) \]

\[\int_{-\infty}^{\infty} f_X(x) \, dx = 1. \quad (4.8) \]

Figure 4.1 (a) The probability density function (PDF) and (b) the distribution function of a unit normal random variable.
4.1.2 Expectation, moments, central moments, and variance

The expectation:

\[\mu_X = E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx, \]

(4.9)

\[\mu_X = \int_{0}^{\infty} x f_X(x) \, dx + \int_{-\infty}^{0} x f_X(x) \, dx \]

\[= \int_{0}^{\infty} [1 - F_X(x)] \, dx - \int_{-\infty}^{0} F_X(x) \, dx. \]

(4.10)

Figure 4.2 The expectation of the random variable \(X \) is the difference of the shaded regions.
If X is a **nonnegative** RV,

$$
\mu_X = \int_0^\infty F_X^c(x) \, dx,
$$

(4.11)

where

$$
F_X^c(x) = 1 - F_X(x), \quad x \geq 0
$$

(4.12)

Is the **complementary distribution function** or the **survivor function** of the RV X.

The mth **moment** and mth **central moment** of a continuous RV X:

$$
E[X^m] = \int_{-\infty}^\infty x^m f_X(x) \, dx,
$$

(4.13)

$$
E[(X - \mu_X)^m] = \int_{-\infty}^\infty (x - \mu_X)^m f_X(x) \, dx.
$$

(4.14)

The variance:

$$
\sigma_X^2 = \text{Var}[X] = \int_{-\infty}^\infty (x - \mu_X)^2 f_X(x) \, dx
$$

$$
= E[X^2] - \mu_X^2.
$$

(4.15)
For a nonnegative RV X,

$$E[X^2] = 2 \int_0^\infty x F_x^c(x) \, dx.$$ \hfill (4.16)

$$\sigma_X^2 = E[X^2] - \mu_X^2 = 2 \int_0^\infty x F_x^c(x) \, dx - \mu_X^2.$$ \hfill (4.17)

The notions and properties of **covariance** and **correlation coefficient** between continuous RVs are exactly the same as those for discrete RVs.

4.2 Important Continuous Random Variables and Their Distributions

4.2.1 Uniform distribution

$$F_X(x) = \begin{cases}
0, & \text{if } x < a, \\
\frac{x-a}{b-a}, & \text{if } a \leq x \leq b, \\
1, & \text{if } x > b.
\end{cases}$$ \hfill (4.18)

$$f_X(x) = \begin{cases}
\frac{1}{b-a}, & \text{if } a \leq x \leq b, \\
0, & \text{elsewhere.}
\end{cases}$$ \hfill (4.19)
The unit uniform RV \(U \) defined over the unit interval \([0, 1]\) has

\[
\begin{align*}
\mu_X &= \frac{b + a}{2}, \\
E[X^2] &= \frac{b^2 + ba + a^2}{3}, \\
\sigma_X^2 &= \frac{(b - a)^2}{12}.
\end{align*}
\] (4.20, 4.21, 4.22)

- The unit uniform RV \(U \) defined over the unit interval \([0, 1]\) has

\[
F_U(u) = u, \quad 0 \leq u \leq 1, \\
f_U(u) = 1, \quad 0 \leq u \leq 1.
\] (4.23)
4.2.2 Exponential distribution

The exponential distribution function with rate λ

$$F_X(x) = 1 - e^{-\lambda x}, \quad x \geq 0,$$

(4.24)

and the density function

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \geq 0.$$

(4.25)

![Graphs of the exponential distribution function and its density function.]

Figure 4.3 (a) The PDF and (b) the distribution function of an exponential RV.

Note: $a=1/\lambda$ is the mean of the distribution
The **memoryless property** of the exponential distribution.

\[
P [X > t + s | X > s] = \frac{P [X > t + s]}{P [X > s]} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda s}} = e^{-\lambda t} = P [X > t].
\] (4.26)

The “waiting time paradox of the **Poisson process**.”

The mean and variance:

\[
\mu_X = \int_0^\infty F_X^c (x) \, dx = \int_0^\infty e^{-\lambda x} \, dx = \frac{1}{\lambda}. \tag{4.27}
\]

\[
\sigma_X^2 = 2 \int_0^\infty xe^{-\lambda x} - \mu_X^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}. \tag{4.28}
\]

The coefficient of variation

\[
c_X = \frac{\sigma_X}{\mu_X}, \tag{4.29}
\]

is equal to unity.
4.2.3 Gamma distribution
The PDF of the gamma distribution with parameters \((\lambda, \beta)\):

\[
f_Y(y; \lambda, \beta) \triangleq \frac{\lambda(\lambda y)^{\beta-1} e^{-\lambda y}}{\Gamma(\beta)}, \quad y \geq 0; \beta, \lambda > 0,
\]

where \(\Gamma(\beta)\) is the gamma function

\[
\Gamma(\beta) = \int_0^\infty t^{\beta-1} e^{-t} dt = (\beta - 1)\Gamma(\beta - 1),
\]

- The case \(\beta=1\) reduces to the exponential distribution with rate \(\lambda\).
- The case \(\lambda=1\) is called the **standard gamma distribution**:

\[
f_X(x; \beta) \triangleq \frac{x^{\beta-1} e^{-x}}{\Gamma(\beta)}, \quad x \geq 0; \beta > 0.
\]

\[
E[X] = \frac{1}{\Gamma(\beta)} \int_0^\infty \lambda x e^{-x} x^{\beta-1} dx = \frac{\Gamma(\beta + 1)}{\Gamma(\beta)} = \beta,
\]

\[
Var[X] = E[X^2] - (E[X])^2 = \beta.
\]
For the RV Y defined by (4.30), we find

$$E[Y] = \frac{\beta}{\lambda}, \quad E[Y^2] = \frac{\beta(\beta + 1)}{\lambda^2}, \quad \text{and} \quad \text{Var}[Y] = \frac{\beta}{\lambda^2}. \quad (4.39)$$

Figure 4.4 Gamma distributions for different parameters (λ, β), where the mean is kept constant ($= 1$), i.e., $\beta/\lambda = 1$.

Note: α should be λ
For $\beta < 1$ (the dashed curve in Figure 4.4), the gamma distribution may fit a distribution with a long tail. But it goes to infinity as $y \to 0$.

For $\beta = 1$, the gamma distribution reduces to the exponential distribution with rate λ.

For $\beta > 1$, the PDF starts from the origin, and takes a single maximum (i.e., its mode) at $x = \beta - 1$ (i.e., at $y = (\beta - 1)/\lambda$) and decreases towards zero as x (or y) $\to \infty$.

If $\beta = r$, a positive integer, the RV Y is equivalent to the sum of k i.i.d. exponential variables with mean $1/\lambda$. Hence $E[Y] = r/\lambda$. The distribution is known as the r-stage Erlang distribution (4.163) of Problem 4.11.

\[
F_{Y_r}(y) = 1 - e^{-\lambda y} \sum_{j=0}^{r-1} \frac{(\lambda y)^j}{j!}, \quad y \geq 0,
\]

(4.163)

Thus, the gamma variable can be viewed as the sum of β i.i.d. exponential random variables. Then by virtue of the central limit theorem (CLT) the gamma distribution should approach the normal distribution as β becomes large, with mean $(\beta - 1)/\lambda \approx \beta/\lambda$ and variance β/λ^2.

If $\beta = n/2$ for integer n in the standard gamma distribution (4.32), it become the chi-squared distribution with n degrees of freedom. (see Section 7.4).
Application examples of the gamma distribution
- waiting time in queueing systems
- the lifetime of devices as in reliability theory
- the load on webservers
- the distribution of rainfall in climatology
- the distribution of insurance claims in finance service
- widely used as a **conjugate prior** (see pp.97-102) in Bayesian statistics. It is the conjugate prior for the precision (i.e. inverse of the variance) of a normal distribution. It is also the conjugate prior for the exponential distribution.

4.2.4 Normal (or Gaussian) distribution

The **normal** (or **Gaussian**) distribution with **mean** μ and **variance** σ^2:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\}$$ \hspace{1cm} (4.40)

This distribution is often denoted by $N(\mu, \sigma^2)$.
Define \(U = (X - \mu)/\sigma \). Then the variable has the distribution \(N(0, 1) \), whose PDF is

\[
\phi(u) \triangleq \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{u^2}{2} \right\},
\]

and the distribution function is denoted by \(\Phi(u) \):

\[
\Phi(u) = \int_{-\infty}^{u} \phi(t) \, dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left\{ -\frac{t^2}{2} \right\} \, dt
\]

1. For any \(\infty < x < \infty \),

\[
\Phi(-x) = 1 - \Phi(x).
\]

2. For any \(x > 0 \),

\[
\frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \left(\frac{1}{x} - \frac{1}{x^3} \right) < 1 - \Phi(x) < \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \cdot \frac{1}{x}.
\]
3. For large x,

\[
1 - \Phi(x) \approx \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi x}}, \quad x \gg 1. \tag{4.49}
\]

4.2.4.1 Moments of the unit normal distribution

\[
E[U^n] = 0 \quad (n \text{ odd}). \tag{4.53}
\]

When $n \geq 2$ is even, we obtain

\[
E[U^n] = 1 \cdot 3 \cdot 5 \cdots (n - 1) \quad (n \text{ even}), \tag{4.54}
\]

In particular,

\[
E[U] = 0 \quad \text{and} \quad \sigma_U^2 = E[U^2] = 1. \tag{4.55}
\]

For $X \sim N(0,1)$, we can write

\[
X = \sigma U + \mu. \tag{4.56}
\]
The reproductive property of the normal variables.
Let $X_i, i=1, 2, \ldots, n$ be independent RVs having distributions $N(\mu_i, \sigma_i^2)$, and let

$$Y = \sum_{i=1}^{n} a_i X_i,$$

where a_i are real constants. Then the distribution of Y is also normal:

$$N \left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right).$$